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Tracking sustained chaos: A segmentation method

Ioana Triandaf and Ira B. Schwartz*
Special Project for Nonlinear Science, Code 6700.3, Plasma Physics Division,

U.S. Naval Research Laboratory, Washington, DC 20375-5346
~Received 4 June 1999; revised manuscript received 5 June 2000!

We introduce a segmentation control method to sustain chaotic transients in dynamical systems. The sus-
tained transient can be tracked as a system parameter is substantially varied, allowing sustained chaotic
transients far away from crisis parameter values. The method is applied to a chaotic CO2 laser as well as to a
hyperchaotic continuum mechanics model.@S1063-651X~00!12009-4#

PACS number~s!: 05.45.Jn, 05.45.Gg, 46.40.Ff, 42.65.Sf
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INTRODUCTION

Chaos can be a desirable feature in many applications
biology, the disappearance of chaos may signal patholog
phenomena@1–3#. In mechanics, chaos could be induced
spread modal energy at resonance in continua@4,5#, and may
also be induced to achieve optimal machine tool cutting
materials@6#. Chaos is also important in nonlinear optic
communication schemes@7#. In general, however, chaoti
attractors may persist over small parameter regions, whe
chaotic transients persist over large regions in the form
chaotic saddles which result from a crisis@8#. Therefore, it is
fundamental to extend the concept of controlling unsta
dynamical objects to that of chaotic transients, which we c
sustained chaos.

Sustained chaos was introduced in one-dimensional m
in @2,9#, and control of chaotic saddles for two-dimension
~2D! maps was presented in@10#. Sustained chaos in th
presence of other nonchaotic attractors was also achie
@11# by using the natural dynamics of unstable states ly
on the basin boundary separating a periodic attractor f
chaotic transients, called basin boundary saddles. B
saddle methods were subsequently tested experimentall
a low-dimensional system@9#. If one applies this method to
high-dimensional systems possessing complicated beha
identification of the relevant basin boundary saddles may
quite difficult. Therefore, a different approach is required

The proposed method consists in targeting points ne
chaotic transient, once the iterates reach a neighborhoo
an undesired attractor. Targeting is done so that the na
dynamics of the system will engage again the iterations
chaotic motion. By making a brief parameter fluctuation,
attractor is forced to be a repeller so that a point which
on the previously existing chaotic transient can be targe
So instead of landing on the attractor, the iterations w
reach a region of phase space where a chaotic transie
present, causing the chaotic motion to be reexcited. Tar
ing is done close to the attractor, monitoring a chosen ne
borhood, and modeling the system around the attractor b
on a local linear approximation which can be obtained fr
a model as well as from real data. The method takes

*Present address: Center for Biomolecular Science and Engin
ing, Code 6900.IS, Naval Research Laboratory, W. Washing
DC 20375.
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account both the topology of the phase space about the
tractor and the escape regions~see Fig. 1 and Fig. 2 below!.
The main improvement over previously existing methods
sustaining chaos is that the sustained chaotic transient ca
tracked as a parameter is varied. Due to smoothly chang
characteristics of the chosen regions and related topolo
the sustained chaotic transient may be recreated at param
values well beyond the original crisis value.~See@12–14# for
the general theory of tracking unstable orbits.!

We begin by stating our assumptions from a topologi
viewpoint. The relevant topology is shown in Fig. 1 for
general mapf, where A denotes the attractor and CT th
chaotic transient region. In this schematic we show the
tractor, A, the basin saddle which provoked the disappe
ance of the attractor and the stable and unstable manifold
this basin saddle. We assume that the attractorA is proximate
to the stable manifold of the saddle which forms the ba
boundary of the attractor. In Fig. 1 we circle a neighborho
of the attractorA which intersects both the basin of attractio
of A and a region containing points which approach the c
otic transient. This is the neighborhood monitored in th
algorithm and control is activated every time iterations en
such a neighborhood. Letf 21(B) be a point on the stable

er-
n,

FIG. 1. Global topology setup for sustained chaos based o
basin boundary saddle. The map,f, maps the plane into itself. Poin
A denotes the attractor.B and its preimage,f 21(B), lie on the stable
manifold of the basin boundary saddle.S denotes a line segmen
throughB, and f 21(S) is its preimage. CT denotes the region co
taining the chaotic transient.
3529
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3530 PRE 62IOANA TRIANDAF AND IRA B. SCHWARTZ
manifold of the drawn saddle. Consider a segmentf 21(S)
passing throughf 21(B). The map takes the segmentf 21(S)
and the pointf 21(B) into segmentS and pointB, respec-
tively. SegmentS and pointB both lie in a neighborhood o
the basin saddle. Therefore, parameter perturbations in
preimage neighborhood, near the attractor, will be rep
sented similarly in the original image near the saddle due
continuity. Notice the segmentf 21(S) crosses the stabl
manifold, and intersects the basin of attraction ofA and the
chaotic transient. The end points off 21(S) will separate
dynamically: one end point,EA , moving towards the attrac
tor and the other,ECT starting to move chaotically.

In the actual implementation of this algorithm, say in
experiment, we need to probe for the relevant topology. T
is done by finding a segment such asf 21(S) with end points
such that one goes to the attractor and the other one go
the chaotic region. Since the two diverging points creat
segment which straddles the stable manifold, the proced
is called segmentation. The process of segmentation gua
tees that we are close to the boundary of the attractor, and
end point which is mapped into the chaotic transient reg
represents a good candidate for targeting. A parameter
tuation which sends the iterates to such a point has the re
that subsequent iterates will be chaotic since they are
tracted to the chaotic transient. Chaos is reactivated by
peating the monitoring and actuation process based on
mentation@15#.

We note that since the segmentation procedure stradd
stable manifold, it is similar in spirit to the proper interio
maximum~PIM! triple procedure introduced in@16# for com-
puting orbits which lie on one-dimensional manifolds.

SUSTAINING AND TRACKING CHAOTIC TRANSIENTS

To sketch the main ideas for sustaining and track
chaos, we consider a generic high-dimensional Poincare
T:

xn115T~xn ,dn!, ~1!

where dn5d01Ddn is the parameter we adjust to susta
chaos. AssumeT has a chaotic transient, and an attrac
denoted by fixed point (x0 ,d0) at parameterd0. Applying the
algorithm to Eq.~1! proceeds as follows: every time the i

FIG. 2. Iterations for ln(u) at d51.88 illustrating a chaotic tran
sient landing on a period-4 attractor. Every other iterate is sho
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erations reach a prescribed neighborhood of the attractox0,
control is activated. The parameter perturbation is chose
target a preassigned value in a neighborhood of the
point, ECT, N(ECT), contained in a previously existing cha
otic transient. So the value ofxn11 is preassigned.

Targeting is accomplished by using two steps. First, p
placement@17#, which has been previously applied to th
control of chaos using time series embedding, is used
destabilize the attractor@18#. Then the destabilized system
used to target a point inN(ECT). Linearizing T about the
periodic attracting point (x0 ,d0), we obtain

xn112x05A~xn2x0!1B~dn2d0!, ~2!

whereA is the derivative of the map with respect tox, andB
is the derivative of the map with respect tod at (x0 ,d0). The
perturbation of the parameter is given by

dn2d052K ~x2x0!. ~3!

The vectorK from Eq.~3! is chosen in such a way that th
target pointxn11 will lie inside N(ECT). This changes briefly
the attractor into a saddle or into a repeller while target
simultaneously. Since the attractors have well defined tr
sients in a local neighborhood, it is easy to acquire lin
least-squares approximations to Eq.~2! from embedded time
series@18# in order to derive the matrixA and the vectorB
from experimental data. Tracking is done by updating
linearized model~2! as d0 is changed, which we now de
scribe.

The present algorithm allows for continuing, or trackin
the sustained chaotic state as the parameter is increased
out any premeasuring of the system. Increasingd0 by a small
amount, sayh, we want chaos to persist at the new parame
value. As the parameter is increased, the position of the
tractor changes continuously along with the relevant sad
This saddle is connected to the stable manifold which
contained in the neighborhood which we target~see Fig. 1!.
However, the previous target point may not be suitable a
target point since it may no longer lie across the stable m
fold. That is, the line segment connecting two divergi
points at parameterd0 may no longer satisfy the hypothese
in Fig. 1 at the new parameter value,d01h. Therefore, the
position of the attractor has to be updated as well as
target point. Once these new values are determined, the
potheses of the topology in Fig. 1 will be satisfied, and
segmentation procedure can be implemented as before.

The new position of the attractor and its neighborho
can be easily found since the dynamics will asymptotica
approach this attractor naturally. Next we need to have
approximate location of the boundary separating the attra
and the chaotic transient at the new parameter value.
determine the approximate boundary by locating a po
which diverges from the attractor neighborhood. Some t
and error has to be used for this step in a real experim
Given a model, a rigorous approach would be to locate
basin boundary accurately using an appropriate algori
such as the PIM triple procedure@16#. In practice, probing a
few target points is sufficient to approximate a segm
which crosses the boundary defined by a stable manifold

To make this probing effective, we proceed as follow
We start by using the previous target point as our new ta

.
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PRE 62 3531TRACKING SUSTAINED CHAOS: A SEGMENTATION METHOD
point. If the previous target point is attracted to the n
attractor, then we turn the attractor at the new param
value into a repeller using pole-placement methods@18#.
Now that local neighborhood about the attractor is repelli
we can pick a few points distributed around it and see wh
the dynamics sends them in the short time. If one of th
points evolves into chaotic motion, we choose that point
our target point and use it to sustain chaos at this new
rameter value. We define that point to be targetable if
point is parametrically accessible from the repelling neig
borhood. That is, if points begin to approach the attrac
creating a repeller enables the location of a targetable po
Once a targetable point is located, a segment may be
structed between an attracting point and the targetable p
which intersects the stable manifold.

In contrast to acquiring a targetable point, now supp
all of the chosen points fall back on the attractor. The in
cation is that the attractor is too far from the boundary a
tracking cannot proceed any further under the hypothe
illustrated in Fig. 1. This is due to the fact that a segm
intersecting the boundary cannot be constructed for
sample of points considered.

At parameter values near the crisis value, the problem
finding a segment intersecting the boundary does not e
when the crisis is near a saddle-node bifurcation point. T
attractor is initially close to its basin boundary by the natu
of the type of crisis we consider, so tracking can be done
we increase the parameter such that we are close to the
value. How far we may extend the segmentation proced
for larger values ofd depends on the problem being cons
ered. In the case of the low-dimensional model conside
below, we were able to pursue the tracking procedure c
siderably past the crisis parameter value. Therefore, the
cess of tracking depends on the attractor neighborhood
maining sufficiently close to the stable manifold bounda
which is always the case initially at the crisis value, so de
of the crisis is always possible.

APPLICATIONS OF TRACKING
AND SUSTAINING CHAOS

A low-dimensional model

We use a periodically forced laser to test our ideas si
the topology of the manifolds which form chaotic transien
arising from horseshoe dynamics is well known@19#:

du

dt
52u@d cos~Vt1c!2z#,

~4!

dz

dt
52e1z2u2e2zu11,

whereu andz denote~scaled! intensity and population inver
sion. d represents the amplitude of the drive. The fixed p
rameters and their values aree150.09, e250.003, andc
50. The original model was introduced in@20#, and control
and tracking of unstable periodic orbits are done in@11,13#.
Other papers which have analyzed this model in various
plications appear in@21# and @22#.
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For d slightly past a critical valuedc , a chaotic saddle is
created due to the unstable manifold of the basin bound
saddle crossing its stable manifold. Almost all points in t
region near the saddle now converge to a period-4 attra
which has period-doubled off the period-2 branch. A chao
transient typically settles into a period-4 attractor after ab
100 iterations as shown in Fig. 2.

In Fig. 3 we show the topology of the phase space co
sponding to Eq.~4!. We notice in this figure the attractor o
period 4 and the period-2 basin saddle with its stable
unstable manifolds. In this figure, a horseshoe is crea
from the right; i.e., the unstable manifold to the right of th
stable manifold crosses the stable manifold nearSa . Almost
all points in the region near the saddle now converge t
period-4 orbit which has period-doubled off the period
branch. The purpose of our method is to make the cha
transients persist by preventing the flow from being captu
by the attracting orbit.

In Fig. 4 we show the iterates ofT ~dots! after applying
the sustained chaos algorithm guided by Eq.~3!. The chaotic

FIG. 3. The topology setup for the laser model in Eq.~4! when
d51.88. Sa and Sb denote period-2 basin boundary saddles. T
crosses denotes the period-4 attractor.

FIG. 4. Sustained chaos~dots! using parameter perturbation
~lines!, dn2d0, whered051.88. The mapT is a period-2 map, and
the attractor~not shown! is of period 4.
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3532 PRE 62IOANA TRIANDAF AND IRA B. SCHWARTZ
transients were prolonged on average by 350 period-2 it
tions, which translates to 700 iterations of the drive peri
In Fig. 4, the right axis illustrates the parameter perturbati
used to sustain the chaotic saddle. Notice that only 13
rameter fluctuations were needed. To justify that indeed
fluctuations resulted in induced chaotic behavior, we fou
that the maximum Lyapunov exponent calculated from
linear variational equations along the parametrically p
turbed trajectory in Fig. 4 was approximately 0.14.

In the above numerical experiments we applied
segmentation-tracking technique every other period, acti
ing parameter perturbations every time the dynamics la
within a neighborhood of a~period-4! attractor. The vectorK
was reconstructed at each increment ind. At each paramete
value we sustained 400 chaotic iterates~dots! which appear
along vertical lines in Fig. 5. Also plotted is the bifurcatio
picture of attractors without parameter control~open boxes!.
We notice from Fig. 5 that the range over which tracking
possible removes the restriction of sustaining chaos clos
a crisis parameter value.

Periodic saddles which are responsible for the obser
global dynamical behavior typically persist over very lar
ranges of parameter values, which is the case for Eq.~1!
@19#. Tracking sustained chaos is possible since these sad
naturally persist, so the global structure of the stable
unstable manifolds of this persisting periodic saddle inters
transversally as they did for the original chaotic transient.
we perturb the system, the horseshoe dynamics is being
excited and chaos is induced, as evidenced by the pos
Lyapunov exponent.

A high-dimensional model

We apply the above procedure to a high-dimensio
coupled-pendulum model. In@5#, new dynamical behavio
was presented for a system consisting in a forced dam
pendulum attached to a stiff rod which is flexible and mov
periodically in a vertical plane. The system was examin
when operating in a resonant mode, where the pendu
frequency is half that of the fundamental frequency of
rod. It is known that when the rod is sufficiently stiff, th
dynamics resides on a global slow invariant manifold,
rod being slaved to the motion of the pendulum@4#, so the

FIG. 5. Sustained chaos~dots! is tracked as the parameterd is
increased discretely. The absorbing attractors~open squares! are
also shown as a bifurcation diagram.
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dynamics is a perturbation of a parametrically driven pen
lum. When operating at resonance, there exists a critical
plitude of the driving force that causes an abrupt chan
from periodic behavior to high-dimensional hyperchaotic b
havior where there are two or more positive Lyapunov e
ponents. Chaos appears discontinuously, without a bifu
tion sequence to chaotic behavior. Chaos appears a
subcritical bifurcation point since it exhibits hysteretic b
havior as a function of the amplitude of the forcing.

We apply the tracking sustained chaos algorithm for
high-dimensional continuum mechanics model for the se
parameter values which exhibits hyperchaos~more than one
positive Lyapunov exponent!. This model describing a pen
dulum attached to a flexible support is derived in@4#. The
support of the pendulum is a linear viscoelastic rod restric
to undergo planar vertical motion subject to a tim
dependent motionxA(t)5a cosvt, at its upper end,A.
XB(t) is the motion of the bottom of the rod relative to th
support. The rod equation~dimensionless! modeling the dis-
placement field,V, and angular displacement of the pend
lum u is given by

ü52@12V̈~j51,t!1ẌA~t!#sin~u!22zpu̇, ~5!

m2p2

4
V, tt~j,t!5V, jj~j,t!12z rmV, tjj~j,t!

2
m2p2

4
ẌA~t!, ~6!

V~j50,t!50,

V, j~j51,t!52
m2bp2

4
@12T cos~u!#, ~7!

where

FIG. 6. A bifurcation diagram showing the branches of perio
solutions as a function ofa for the one-mode model. Notice tha
there is saddle-saddle bifurcation opening to the right. The lo
branch of saddles has a two-dimensional unstable manifold.
text for details and parameter values.
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PRE 62 3533TRACKING SUSTAINED CHAOS: A SEGMENTATION METHOD
T5 u̇21@12ẌB~t!#cos~u!. ~8!

The variableV(j,t) denotes the normalized displaceme
field with respect to the normalized static displacement fie
Equation~7! gives the boundary conditions for the coupl
rod ~6!. Equation~8! gives the normalized tensionT along
the pendulum arm. In@5#, a bifurcation to high-dimensiona
hyperchaos was shown for the above PDE-ODE syst
where both the number of active modes and the numbe
positive Lyapunov exponents increase discontinuously, m
ing the system high dimensional and hyperchaotic.

The solution of Eq.~5! is expanded using a Galerkin ap
proximation in space and a set of coupled oscillators is
tained. In what follows, a first-order truncation yields
linear-nonlinear driven coupled oscillator system. Fixed
rameter values arem50.577, jp5j r50.01, v51.952, b
51. ~See@5# for details.! The discrete dynamics generate
by sampling at the forcing frequency is four-dimension
and we have found that the chaotic transient~when sus-
tained! has two positive Lyapunov exponents, with valu
0.21 and 0.04 whena50.36. The perturbation parameter w
use for tracking sustained chaos isa.

The bifurcation structure of the one-mode model deriv
from Eqs.~5!–~8! is shown in Fig. 6 as a function of forcin
amplitudea. In Fig. 6, there are two coexisting branches
saddles in the parameter region of interest, in addition t
coexisting attracting branch. One branch of saddles ha
one-dimensional unstable manifold, while the other ha
two-dimensional unstable manifold.~Details will appear
elsewhere.! The high-dimensional unstable direction is co
jectured to be the source of hyperchaotic transients;
chaos having more than one positive Lyapunov expon
This situation shown in Fig. 6 is more complicated than
one presented in@23# since~i! chaos is hyperchaotic with two
positive Lyapunov exponents,~ii ! a connecting branch o
saddles has a two-dimensional unstable manifold, and~iii ! it
is not clear which saddle is the basin boundary saddle. S
complications make it difficult to sustain chaos based
basin boundary saddle methods such as those in@11# and
@23#. However, the segmentation-tracking procedure allo
one to overcome such difficulties.

In Fig. 7 we show the tracked chaotic state for 10 ste

FIG. 7. Sustained chaos~dots! for the coupled rod pendulum i
tracked as the parametera is decreased. The absorbing period
attractors~open squares! are shown as a bifurcation diagram.
t
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started ata50.36, and then tracked for decreaseda. For
each parameter value, the chaotic iterations~dots! appear in
Fig. 7 along a vertical line. The same trajectory, when
algorithm is not applied, would collapse on the periodic
tractor~shown as open squares!. The parameter perturbation
used to obtain Fig. 7 are shown in Fig. 8 for the entire run
a function of iteration. For each fixed parameter in Fig.
500 iterations were computed.

CONCLUSION AND DISCUSSION

Tracking sustained chaos is an improvement over pre
ous methods where chaos was sustained only at a fixed
rameter value@2,11#. Such a method requires only parti
knowledge of the phase space and applies to systems m
eled from time series, which makes it suitable for expe
ments. A definitive advantage is that the technique can
more easily implemented than previous methods when
plied to higher dimensional systems since the accurate
scription of stable and unstable manifolds governing the
sis may be extremely hard to compute in higher dimensio

Other approaches to sustained chaos can be foun
@2,9,24#, where the algorithm requires accurate knowledge
escape regions in phase space where chaos disappea
well as knowledge of the preiterations of this region. A
analytic scheme for sustained chaos was introduced in@25#
that uses state variable control, but modifies explicitly t
governing dynamical model.

Instead of preventing escape to an attractor in advanc
done in@2# and@9#, our approach is to take a global view o
the phase space, inhibit the absorbing attractor, and targ
chosen neighborhood. This amounts to briefly changing
nature of the attractor by adjusting temporarily an access
system parameter. The method succeeds whenever a su
topology of phase space is present, namely the attra
which absorbs the chaotic transient is close to the ba
boundary between the attractor and the transient. In this w
points across the basin boundary are accessible by targe
As a result of targeting, the natural dynamics of the system
used to recreate chaos.
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FIG. 8. Parameter values and perturbations ofa used to track
sustained chaos in the rod-pendulum model.
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