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Tracking sustained chaos: A segmentation method
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We introduce a segmentation control method to sustain chaotic transients in dynamical systems. The sus-
tained transient can be tracked as a system parameter is substantially varied, allowing sustained chaotic
transients far away from crisis parameter values. The method is applied to a chagtiaseéfas well as to a
hyperchaotic continuum mechanics mod&1063-651X00)12009-4

PACS numbeps): 05.45.Jn, 05.45.Gg, 46.40.Ff, 42.65.Sf

INTRODUCTION account both the topology of the phase space about the at-
tractor and the escape regiofsee Fig. 1 and Fig. 2 below
Chaos can be a desirable feature in many applications. lifhe main improvement over previously existing methods for
biology, the disappearance of chaos may signal pathologic&ustaining chaos is that the sustained chaotic transient can be
phenomend1-3]. In mechanics, chaos could be induced totracked as a parameter is varied. Due to smoothly changing
spread modal energy at resonance in cont[dya], and may ~ characteristics of the chosen regions and related topology,
also be induced to achieve optimal machine tool cutting irfh€ sustained chaotic transient may be recreated at parameter
materials[6]. Chaos is also important in nonlinear optical Values well beyond the original crisis valu&ee[12-14 for
communication schemed]. In general, however, chaotic the general theory of tracking unstable orbits.
attractors may persist over small parameter regions, whereas We begin by stating our assumptions from a topological
chaotic transients persist over large regions in the form o¥iewpoint. The relevant topology is shown in Fig. 1 for a
chaotic saddles which result from a crif&. Therefore, itis general mapf, where A denotes the attractor and CT the
fundamental to extend the concept of controlling unstablehaotic transient region. In this schematic we show the at-
dynamical objects to that of chaotic transients, which we calfractor, A, the basin saddle which provoked the disappear-
sustained chaos. ance of the attractor and the stable and unstable manifolds of

Sustained chaos was introduced in one-dimensional mag8is basin saddle. We assume that the attra&isrproximate
in [2'9], and control of chaotic saddles for two_dimensiona|t0 the Stable manif0|d Of the Saddle Wh|Ch fOI’mS the baSin
(ZD) maps was presented [r]_o] Sustained chaos in the bOUndary of the attractor. In F|g 1 we circle a nEighborhOOd
presence of other nonchaotic attractors was also achievé& the attractoA which intersects both the basin of attraction
[11] by using the natural dynamics of unstable states lying®f A and a region containing points which approach the cha-
on the basin boundary Separating a periodic attractor frorﬁtic transient. This is the neigthI’hOOd monitored in this
chaotic transients, called basin boundary saddles. Basigorithm and control is activated every time iterations enter
saddle methods were subsequently tested experimentally &tich a neighborhood. Lét *(B) be a point on the stable
a low-dimensional systef®]. If one applies this method to
high-dimensional systems possessing complicated behavior,
identification of the relevant basin boundary saddles may be
quite difficult. Therefore, a different approach is required.

The proposed method consists in targeting points near a
chaotic transient, once the iterates reach a neighborhood of
an undesired attractor. Targeting is done so that the natural
dynamics of the system will engage again the iterations in
chaotic motion. By making a brief parameter fluctuation, the
attractor is forced to be a repeller so that a point which lies
on the previously existing chaotic transient can be targeted.
So instead of landing on the attractor, the iterations will
reach a region of phase space where a chaotic transient is
present, causing the chaotic motion to be reexcited. Target-
ing is done close to the attractor, monitoring a chosen neigh-
borhood, and modeling the system around the attractor based
on a local linear approximation which can be obtained from
a model as well as from real data. The method takes into i, 1. Global topology setup for sustained chaos based on a

basin boundary saddle. The mépmaps the plane into itself. Point
A denotes the attractoB and its preimagef,”*(B), lie on the stable
*Present address: Center for Biomolecular Science and Engineemanifold of the basin boundary sadd® denotes a line segment
ing, Code 6900.1S, Naval Research Laboratory, W. WashingtonthroughB, andf~1(S) is its preimage. CT denotes the region con-
DC 20375. taining the chaotic transient.
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10 erations reach a prescribed neighborhood of the attragtor
control is activated. The parameter perturbation is chosen to
target a preassigned value in a neighborhood of the end
point, Ect, N(Ec1), contained in a previously existing cha-
otic transient. So the value of,, 1 is preassigned.

Targeting is accomplished by using two steps. First, pole
" placement[17], which has been previously applied to the
e control of chaos using time series embedding, is used to
20 - : destabilize the attractd 8]. Then the destabilized system is
used to target a point iN(Ec7). Linearizing T about the
periodic attracting pointxy, o), we obtain

In{u)
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0 125 250 375 500 Xn+1—Xo=A(Xn—Xg) T B(8,— p), (2

iteration whereA is the derivative of the map with respecttpandB

FIG. 2. Iterations for In) at 5= 1.88 illustrating a chaotic tran- IS the derivative of the map with respectdat (xo, o). The
sient landing on a period-4 attractor. Every other iterate is shown perturbation of the parameter is given by

manifold of the drawn saddle. Consider a segmient(S) n— 60=~K(X=Xo). ©)
passing througli ~1(B). The map takes the segment!(S)

and the pointf “1(B) into segmentS and pointB, respec- . IR : ;
. ) I . target pointx,, 4 will lie inside N(Ec7). This changes briefly
tively. SegmenS and pointB both lie in a neighborhood of the attractor into a saddle or into a repeller while targeting

the_basm sa(_ddle. Therefore, parameter perturb_atlons n thselmultaneously. Since the attractors have well defined tran-
preimage neighborhood, near the attractor, will be repre:

sented similarly in the original image near the saddle due tsients in @ local neighborhood, it is easy to acquire linear
continuity. Notice the segment™(S) crosses the stable east-squares approximations to &2) from embedded time

. . . ) series[18] in order to derive the matriA and the vectoB
g]zr:)'zpcldt'r:;‘gé?\ier_srﬁgtsetnhde bg?]'tr; ng%t(trsa)‘cuqmngrgi from experimental data. Tracking is done by updating the
™ ) lent. nd points. Wi P linearized modek2) as §, is changed, which we now de-
dynamically: one end poing,, moving towards the attrac-

! ' scribe.
tor and the Othe.'ECT starting to move chaoupally. . The present algorithm allows for continuing, or tracking,
In the actual implementation of this algorithm, say in an

experiment, we need to probe for the relevant topology. Thi %he sustained chaotic state as the parameter is increased with-
is done by finding a segment suchfast(S) with end points ut any premeasuring of the system. Increasipgy a small

The vectoK from Eq.(3) is chosen in such a way that the

. . actor changes continuously along with the relevant saddle.
segment which straddles the stable manifold, the procedurfhis saddlegis connected t)(/) the gstable manifold which is

is called segmentation. The process of segmentation guarapy ..
tees thiit We are glose to the .boundary of the attractor, and_ tlﬁowever the previous target point may not be suitable as a
end point which is mapped into the chaotic transient region !

: . arget point since it may no longer lie across the stable mani-
represents a good candidate for targeting. A parameter fluq- getp y g

. . . . Id. That is, the line segment connecting two diverging
tuation which sends the iterates to such a point has the result.. .
that subsequent iterates will be chaotic since they are a“ttﬁnnts at parameta, may no longer satisfy the hypotheses

tracted to the chaotic transient. Chaos is reactivated by reé—; Fig. 1 atthe new parameter valug+ h. Therefore, the

eating the monitoring and actuation process based on se osition of the attractor has to be updated as well as the
Enenta?ion[lS] 9 P rget point. Once these new values are determined, the hy-

. . otheses of the topology in Fig. 1 will be satisfied, and the
We note_that since the_seg_ment_a_tlon procedure S.tradqlesg%gmentation procedure can be implemented as before.
stable manifold, it is similar in spirit to the proper interior

maximum(PIM) triple procedure introduced 6] for com- The new position of the attractor and its neighborhood
. . Ipie p . ) . can be easily found since the dynamics will asymptotically
puting orbits which lie on one-dimensional manifolds.

approach this attractor naturally. Next we need to have an

approximate location of the boundary separating the attractor
SUSTAINING AND TRACKING CHAOTIC TRANSIENTS and the chaotic transient at the new parameter value. We

To sketch the main ideas for sustaining and trackingl€termine the approximate boundary by locating a point

chaos, we consider a generic high-dimensional Poincare mé/ﬁhich diverges from the attractor neigh_borhood. Some trial
T and error has to be used for this step in a real experiment.

Given a model, a rigorous approach would be to locate the
Xn+1=T(Xn,6n), (1) basin boundary accurately using an appropriate algorithm
such as the PIM triple proceduf&6]. In practice, probing a
where 6,= 6, + A S, is the parameter we adjust to sustainfew target points is sufficient to approximate a segment
chaos. Assumd has a chaotic transient, and an attractorwhich crosses the boundary defined by a stable manifold.
denoted by fixed point(, §y) at parametes,. Applying the To make this probing effective, we proceed as follows.
algorithm to Eq.(1) proceeds as follows: every time the it- We start by using the previous target point as our new target
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point. If the previous target point is attracted to the new
attractor, then we turn the attractor at the new parameter
value into a repeller using pole-placement methotig].
Now that local neighborhood about the attractor is repelling,
we can pick a few points distributed around it and see where
the dynamics sends them in the short time. If one of these
points evolves into chaotic motion, we choose that point as
our target point and use it to sustain chaos at this new pa-
rameter value. We define that point to be targetable if the
point is parametrically accessible from the repelling neigh-
borhood. That is, if points begin to approach the attractor,
creating a repeller enables the location of a targetable point.
Once a targetable point is located, a segment may be con-
structed between an attracting point and the targetable point
which intersects the stable manifold.

In contrast to acquiring a targetable point, now suppose FIG. 3. The topology setup for the laser model in E).when
all of the chosen points fall back on the attractor. The indi-6=1.88. S, and S, denote period-2 basin boundary saddles. The
cation is that the attractor is too far from the boundary and-rosses denotes the period-4 attractor.
tracking cannot proceed any further under the hypotheses
illustrated in Fig. 1. This is due to the fact that a segment For § slightly past a critical valué,, a chaotic saddle is
intersecting the boundary cannot be constructed for thereated due to the unstable manifold of the basin boundary
sample of points considered. saddle crossing its stable manifold. Almost all points in the

At parameter values near the crisis value, the problem ofegion near the saddle now converge to a period-4 attractor
finding a segment intersecting the boundary does not existhich has period-doubled off the period-2 branch. A chaotic
when the crisis is near a saddle-node bifurcation point. Théransient typically settles into a period-4 attractor after about
attractor is initially close to its basin boundary by the naturel00 iterations as shown in Fig. 2.
of the type of crisis we consider, so tracking can be done as In Fig. 3 we show the topology of the phase space corre-
we increase the parameter such that we are close to the crigiponding to Eq(4). We notice in this figure the attractor of
value. How far we may extend the segmentation procedurperiod 4 and the period-2 basin saddle with its stable and
for larger values o® depends on the problem being consid- unstable manifolds. In this figure, a horseshoe is created
ered. In the case of the low-dimensional model considerefrom the right; i.e., the unstable manifold to the right of the
below, we were able to pursue the tracking procedure constable manifold crosses the stable manifold rigar Almost
siderably past the crisis parameter value. Therefore, the suall points in the region near the saddle now converge to a
cess of tracking depends on the attractor neighborhood reseriod-4 orbit which has period-doubled off the period-2
maining sufficiently close to the stable manifold boundary,branch. The purpose of our method is to make the chaotic
which is always the case initially at the crisis value, so delaytransients persist by preventing the flow from being captured
of the crisis is always possible. by the attracting orbit.

In Fig. 4 we show the iterates @t (dotg after applying
the sustained chaos algorithm guided by &). The chaotic

APPLICATIONS OF TRACKING
AND SUSTAINING CHAOS

10 1
A low-dimensional model
We use a periodically forced laser to test our ideas since
the topology of the manifolds which form chaotic transients .| g
arising from horseshoe dynamics is well knoj®]: § &
o sn
du s 3
——=—u[dcog Qt+¢)—1z], . L )
dt [ i w) ] 3 . | -1 O
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whereu andz denote(scaled intensity and population inver-
. . . ) -30 — —— -3
sion. d represents the amplitude of the drive. The fixed pa- 0 125 250 475 500
rameters and their values aeg=0.09, ,=0.003, andy teration

=0. The original model was introduced [ig0], and control
and tracking of unstable periodic orbits are donglih,13. FIG. 4. Sustained chaoglots using parameter perturbations
Other papers which have analyzed this model in various apdines), §,— 8,, whered,=1.88. The ma is a period-2 map, and
plications appear if21] and[22]. the attractor(not shown is of period 4.
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10 dynamics is a perturbation of a parametrically driven pendu-
lum. When operating at resonance, there exists a critical am-
plitude of the driving force that causes an abrupt change
i ; ' from periodic behavior to high-dimensional hyperchaotic be-
| i ) havior where there are two or more positive Lyapunov ex-
! i : ponents. Chaos appears discontinuously, without a bifurca-
il
byd
1

In(u)

tion sequence to chaotic behavior. Chaos appears as a
: subcritical bifurcation point since it exhibits hysteretic be-
& havior as a function of the amplitude of the forcing.

We apply the tracking sustained chaos algorithm for the
high-dimensional continuum mechanics model for the set of

BE:

30 S - . : . parameter values which exhibits hypercham®re than one
185 190 195 200 205 positive Lyapunov exponentThis model describing a pen-
5 dulum attached to a flexible support is derived[4]. The

. . . support of the pendulum is a linear viscoelastic rod restricted
FIG. 5. Sustained chadslotg is tracked as the parametéris to undergo planar vertical motion subject to a time-
increased discretely. The absorbing attract@sen squargsare  dependent motiorx,(t)=a coswt, at its upper endA.
also shown as a bifurcation diagram. Xg(7) is the motion of the bottom of the rod relative to the

support. The rod equatiofdimensionlessmodeling the dis-

transients were prolonged on average by 350 period-2 iterasjacement fieldV, and angular displacement of the pendu-
tions, which translates to 700 iterations of the drive periodyym ¢ is given by

In Fig. 4, the right axis illustrates the parameter perturbations
used to sustain the chaotic saddle. Notice that only 13 pa- H=—[1-V(E=1,7)+Xa(7)]sIN( 9)_2%9, (5)
rameter fluctuations were needed. To justify that indeed the

fluctuations resulted in induced chaotic behavior, we found 2,2

that the maximum Lyapunov exponent calculated from the M—V, AETD=V (£,7) 2L 0V ee(€,7)

linear variational equations along the parametrically per- 4

turbed trajectory in Fig. 4 was approximately 0.14. 2 2

In the above numerical experiments we applied the _BT XA(T) (6)
segmentation-tracking technique every other period, activat-
ing parameter perturbations every time the dynamics lands
within a neighborhood of geriod-4 attractor. The vectaK V(é=0,7)=0,
was reconstructed at each incremendimAt each parameter
value we sustained 400 chaotic iteratdsty which appear u2Ba?
along vertical lines in Fig. 5. Also plotted is the bifurcation V (é=17)=— 7
picture of attractors without parameter contfopen boxeps
We notice from Fig. 5 that the range over which tracking is
possible removes the restriction of sustaining chaos close iyhere
a crisis parameter value.

Periodic saddles which are responsible for the observed 5 e —
global dynamical behavior typically persist over very large ] | + sawewith 1-D unstable manifold
ranges of parameter values, which is the case for (Ex. o D unstable maniold
[19]. Tracking sustained chaos is possible since these saddles
naturally persist, so the global structure of the stable and
unstable manifolds of this persisting periodic saddle intersect
transversally as they did for the original chaotic transient. As
we perturb the system, the horseshoe dynamics is being re-
excited and chaos is induced, as evidenced by the positive
Lyapunov exponent.

[1-Tcog6)], (7

Norm of Solution

A high-dimensional model

We apply the above procedure to a high-dimensional
coupled-pendulum model. If6], new dynamical behavior 0 . . , . .
was presented for a system consisting in a forced damped 000 042 024 0358 048 060
pendulum attached to a stiff rod which is flexible and moves
periodically in a vertical plane. The system was examined
when operating in a resonant mode, where the pendulum F|G. 6. A bifurcation diagram showing the branches of periodic
frequency is half that of the fundamental frequency of thesolutions as a function of for the one-mode model. Notice that
rod. It is known that when the rod is sufficiently stiff, the there is saddle-saddle bifurcation opening to the right. The lower
dynamics resides on a global slow invariant manifold, thebranch of saddles has a two-dimensional unstable manifold. See
rod being slaved to the motion of the pendul{#i, so the text for details and parameter values.

Forcing Amplitude o
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FIG. 7. Sustained chadsdots for the coupled rod pendulum is
tracked as the parameter is decreased. The absorbing periodic
attractors(open squargsare shown as a bifurcation diagram.

T=6?+[1—Xg(7)]cog ). (8)
The variableV(¢, ) denotes the normalized displacement
field with respect to the normalized static displacement field
Equation(7) gives the boundary conditions for the coupled
rod (6). Equation(8) gives the normalized tensioh along
the pendulum arm. 1f5], a bifurcation to high-dimensional

hyperchaos was shown for the above PDE-ODE system,

A SEGMENTATION METHOD

|
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FIG. 8. Parameter values and perturbationsrafised to track
sustained chaos in the rod-pendulum model.

started ata=0.36, and then tracked for decreased For
each parameter value, the chaotic iteratiGihsty appear in
Fig. 7 along a vertical line. The same trajectory, when the
algorithm is not applied, would collapse on the periodic at-
tractor(shown as open squaje3he parameter perturbations
used to obtain Fig. 7 are shown in Fig. 8 for the entire run as
a function of iteration. For each fixed parameter in Fig. 7,
500 iterations were computed.

CONCLUSION AND DISCUSSION

where both the number of active modes and the number of

positive Lyapunov exponents increase discontinuously, ma
ing the system high dimensional and hyperchaotic.

The solution of Eq(5) is expanded using a Galerkin ap-
proximation in space and a set of coupled oscillators is 0
tained. In what follows, a first-order truncation yields a
linear-nonlinear driven coupled oscillator system. Fixed pa
rameter values arg.=0.577, {,=§,=0.01, w=1.952, 8
=1. (See[5] for details) The discrete dynamics generated
by sampling at the forcing frequency is four-dimensional,
and we have found that the chaotic transiéwhen sus-

tained has two positive Lyapunov exponents, with values

0.21 and 0.04 wher=0.36. The perturbation parameter we
use for tracking sustained chaosdis

The bifurcation structure of the one-mode model derive
from Egs.(5)—(8) is shown in Fig. 6 as a function of forcing
amplitudea. In Fig. 6, there are two coexisting branches of
saddles in the parameter region of interest, in addition to
coexisting attracting branch. One branch of saddles has
one-dimensional unstable manifold, while the other has
two-dimensional unstable manifoldDetails will appear
elsewherg. The high-dimensional unstable direction is con-
jectured to be the source of hyperchaotic transients; i.e
chaos having more than one positive Lyapunov exponen

one presented if23] since(i) chaos is hyperchaotic with two

positive Lyapunov exponentsii) a connecting branch of

saddles has a two-dimensional unstable manifold,(andt

is not clear which saddle is the basin boundary saddle. Su
complications make it difficult to sustain chaos based o
basin boundary saddle methods such as thosg ih and

This situation shown in Fig. 6 is more complicated than thef.0 . : ; . )
g b which absorbs the chaotic transient is close to the basin

k. Tracking sustained chaos is an improvement over previ-

ous methods where chaos was sustained only at a fixed pa-
rameter valug2,11]. Such a method requires only partial

pknowledge of the phase space and applies to systems mod-

eled from time series, which makes it suitable for experi-
ments. A definitive advantage is that the technique can be
more easily implemented than previous methods when ap-
plied to higher dimensional systems since the accurate de-
scription of stable and unstable manifolds governing the cri-
sis may be extremely hard to compute in higher dimensions.
Other approaches to sustained chaos can be found in
[2,9,24, where the algorithm requires accurate knowledge of
escape regions in phase space where chaos disappears, as

Cyvell as knowledge of the preiterations of this region. An

analytic scheme for sustained chaos was introducd@5h

that uses state variable control, but modifies explicitly the
governing dynamical model.

%o

the phase space, inhibit the absorbing attractor, and target a

Instead of preventing escape to an attractor in advance as
ne in[2] and[9], our approach is to take a global view of

chosen neighborhood. This amounts to briefly changing the
nature of the attractor by adjusting temporarily an accessible
ystem parameter. The method succeeds whenever a suitable
pology of phase space is present, namely the attractor

boundary between the attractor and the transient. In this way,
points across the basin boundary are accessible by targeting.

dﬁs a result of targeting, the natural dynamics of the system is
r1.|sed to recreate chaos.
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